
Abstract- High-speed network and grid computing have
been actively investigated, and their capabilities are
being demonstrated. However, their application to
high-end scientific computing and modeling is still to
be explored. In this paper we discuss the related issues
and present our prototype work on applying XCAT3
framework technology to geomagnetic data
assimilation development with distributed computers,
connected through an up to 10 Gigabit Ethernet
network.

I. INTRODUCTION

The method of ensemble simulation has been widely used
to analyze observations and make predictions with
numerical models in which known physics and
observations are integrated to forecast changes in the
future. A well-known example is weather forecasting [1].
In this approach, a suite (ensemble) of numerical tests is
used to obtain the best estimation used for optimal
forecasting. The ensemble size often varies for different
geophysical problems. A typical ensemble size is
approximately 30 independent numerical tests. It is not
unusual to have a much larger ensemble size.

More recently, data assimilation has been used in solid
Earth science, where even more complicated global
models are used to predict geophysical environment
changes over much longer geological periods [2]. Another
on-going area of research is geomagnetic data
assimilation [3], in which surface geomagnetic data over
the past several thousand years will be assimilated into
geodynamo models to predict geomagnetic secular
variation on time scales of several decades and longer.

One challenge these solid Earth science research activities
share is the unprecedented demand on computing
resources. Consider one geodynamo model, the MoSST
(Modular, Scalable, Self-consistent, Three-dimensional)
core dynamics model [4,5], as an example for illustration.
With a modest truncation level of (40, 40, 40), the
numerical model requires 500 MB RAM and 1012 flops
for a single numerical test. Considering that for
geomagnetic data assimilation, the truncation level may
increase to (200, 200, 200), then one numerical test shall
require 700 GB RAM and 1016 flops. For a successful
assimilation, we expect a minimum of 30 such tests. With
current available computing capabilities, it is neither

practical nor obvious that such a grand-scale computation
can be carried out in a single supercomputing facility.

However, such ensemble tests are nearly independent:
individual initial states are generated for each test. The
final assimilated results will then be collected for
analysis. And new initial states will consequently be
generated for further simulation. Therefore, there is very
limited communication among the individual ensemble
tests. Such a modeling nature can be ideal for grid-
computation application.

Here we will focus on establishing a system to predict
geomagnetic secular variation on decadal and longer time
scales, utilizing surface geomagnetic/paleomagnetic
records and the MoSST core dynamics model. In this
approach, model forecast results and observations are
weighted to provide the initial state for assimilation.
Typically 30 independent numerical tests are necessary
for a reasonable ensemble size. This could easily require a
computing cycle on the order of petaflops and larger.

A single supercomputing facility for such studies is an
optimal choice, but is not practical given that
requirements for computational time and memory exceed
its capabilities. However, it is relatively easy for users
(researchers) to manage because of a unified system
environment.

Grid computing can be a much better choice so that
independent numerical tests can be carried out on
different systems. However, researchers (users) have to
deal with heterogeneous system environments and other
problems, such as those in network communication.

In this paper, we will discuss the issues of effectively
applying grid computing to high-end computation and
present a practical case: managing a distributed ensemble
simulation. We will describe a prototype based on the
XCAT3 [6] framework and illustrate it through running
an ensemble of geodynamic applications on distributed
computers, which are connected through an Ethernet
network with speeds up to 10 gigabits per second. The
relevant activities of building a high-speed network at
NASA Goddard Space Flight Center (GSFC) will be
reported.

High-Speed Network and Grid Computing for High-End Computation:
Application in Geodynamics Ensemble Simulations

S. Zhou1, W. Kuang2, W. Jiang3, P. Gary2, J. Palencia4, G. Gardner5

1Northrop Grumman/TASC, 2NASA Goddard Space Flight Center, 3JCET, UMBC, 4Raytheon ITSS, 5INDUSCORP

II. GRID COMPUTING IN HIGH-END

COMPUTATION

Grid computing integrates networking, communication,
computation, and information to provide a computation
and data management capability that forms a virtual
platform for information [7]. Recently the Open Grid
Services Architecture (OGSA) has been proposed to
standardize grid computing. Grid-enabled applications are
being demonstrated. A recent development in high-speed
networks, the National LambdaRail, enables
transportation of huge amounts of data across the U.S. [8,
9]. At GSFC, a project is being carried out to connect
GSFC to the National LambdaRail [10].

Grid computing, armed with LambdaRail technology,
provides a good opportunity for distributed high-end
computing applications. There are two kinds of such
applications: tightly as well as loosely coupled. One
tightly coupled application is climate modeling. A typical
Earth system model consists of several complex model
components, such as atmosphere, ocean, land, and sea-ice,
coupled together through frequent data exchanges. In a
decadal climate simulation, an ocean model has to
exchange information with an atmosphere model at least
once a calendar day. But ensemble forecasting is a loosely
coupled application. In that case, individual simulations
are independent of each other. Only the ensemble driver
needs to take the feedback of the ongoing individual
simulations and consequently constructs the running
conditions, such as initial conditions, for the individual
simulation to be dispatched.

In principle, grid computing over a Lambda network
should support loosely as well as tightly coupled
applications. However, the political issues among
different supercomputing centers, such as coordinated job
schedules and immature network connectivity, make the
tightly coupled applications less favorable, although a few
special simulations can still be demonstrated. We believe
that loosely coupled applications, such as ensemble
simulations, will prevail in the current environment.

In the next section, we will present our prototype of
managing distributed ensemble simulations based on the
XCAT3 framework.

III. DESCRIPTION OF THE PROTOTYPE

Our goal is to use grid computing technology as
middleware, dispatching a set of ensemble jobs to
different computers across networks, collecting feedback
from dispatched ensemble jobs, constructing new running
conditions (such as initial conditions), and dispatching
another set of ensemble jobs. This middleware should be

portable across different computer platforms and user-
friendly.

We chose XCAT3, a Common Component Architecture
(CCA)-compliant framework, since it is implemented in
Java, which ensures portability. In addition, its component
employs CCA’s Use-Provide System Pattern [11] and
can be assembled and executed easily with a Jython [12]
script as well as a Web-based graphical user interface
(GUI) tool [6].

XCAT was also developed to satisfy the Open Grid
Standard Interface (OGSI) specification. In this way, its
components are accessible via standard grid clients, too.
XCAT employs the Remote Method Invocation (RMI)
mechanism implemented by XSOAP [13] to allow
communication and control among local and remote
components. Merging the two standards (CCA and
OGSI), XCAT uses an approach where a component is
modeled as a set of grid services.

In our prototype, the XCAT3 framework is used to handle
network communication, but we develop XCAT3
components to send and receive messages as well as
execute the commands on those ensemble members. In
each component, there are five standard interfaces
[initialize(), run(), finalize(), provideCMD(), and
useCMD()] to be implemented. In addition, a standard
data type, geoCMD, is used to exchange data among
components. This definition of a component is similar to
the ESMF-CCA Prototype [14, 15].

There are two kinds of implementation for this type of
components: One is to dispatch the messages to
distributed ensemble members or collect the messages
from ensemble members. Another is to receive the
message from the driver and execute the message on
ensemble members, such as invoking the command,
mpirun, and sending the feedback. The function,
initalize(), sets up initial messages; provideCMD() offers
its message for other component to use; useCMD() takes
the message from other component; run() acts on the
taken message and gives the feedback; finalize() cleans up
the system, such as file closure and port disconnection.

CCA components interact by adhering to the Uses-
Provides design pattern. This means that each component
publishes the functionality that it allows other
components to access. These published methods are
known as Provides Ports. Each component also publishes
the functionality that it needs to have other components
perform for it. These published methods are known as
Uses Ports. Conceptually a ‘port’ can be thought of as a
contract between components of a system. It is the
equivalent of Java interfaces and pure abstract class
definitions in C++. The CCA framework includes one

additional type of port. The ‘go’ port is the starting point
for executing systems of components. Driver components
implement the ‘go’ port. They schedule and control the
running sequence of components. A CCA-compliant
framework, like Ccaffeine [11] or XCAT, is responsible
for connecting and managing ports. For example, a
component, driver, with a Uses Port of name geo1Use
and type CMD, can be connected to another component,
geo1, with a Provides Port of name geo1Provide and the
same type, CMD (see Figure 1). The connection is carried
out in the run time.

Figure 1 Illustration of coupling two components using
CCA.

In XCAT3, each component is developed in Java,
compiled as a Java class (.class), and stored in an
individual directory. With a Jython script, a user lists
Provides components and Uses components, specifies
their locations (e.g., file directory and computer machine),
and then chooses one of three mechanisms to handle
creation of the components: local, SSH, or gram [which
uses the Globus’ Grid Resource Allocation and
Management (GRAM)]. After that, live instances of the
components are created on the target computer machine
and the Provides Port and Uses Port of the components
are connected, and the execution of the program starts by
invoking the go method of the driver component.

IV. CONFIGURATION TO TEST THE PROTOTYPE

We dedicated five computer nodes in a Linux cluster to
mimic a distributed computing environment. There are
two processors in each node. The five nodes are divided
into three groups: one, two, and two nodes. Each group
has its own local disk space. Each two-node group acts as
a small cluster. We put a driver component and a
dispatcher component, “dispatch,” on the host computer
with one node, and two receiver components, “geo1” and

“geo2”, on other two small clusters, respectively. For
simplicity, we chose SSH to connect the two-node small
clusters and the host computer.

In the small cluster where the receiver component, “geo”,
is installed, an ensemble member of the application is also
installed. The code of an ensemble member can be serial
as well as parallel (see Fig. 2).

A parallel geodynamics code, MoSST, is chosen to
represent an application. This code uses the master-slave
parallel paradigm. All four processors in the small cluster
were used for running MoSST. The receiver component,
such as “geo1”, is located at the master processor. The
number of processors for slave is determined by the
application code rather than the grid computing code.

Figure 2 System architecture.

V. CURRENT OPERATING ENVIRONMENTS

Our prototype is designed to support various running
scenarios by varying the exchanged messages among
components as well as the running sequence in the driver.
In addition, our component interface ensures that adding a
new receiver component such as “geo3” can be very easy.
It is more or less a duplication of “geo”. In the following
section, we demonstrate a typical scenario: invoking a
parallel job in MPI on distributed ensemble members.

At the beginning of a simulation, the XCAT3 framework
creates each component. Its setService utility registers
the components of driver, dispatch, geo1, and geo2. The
Uses Ports of the driver component connects to the
Provides Ports of dispatch, geo1, and geo2, respectively
(See Fig. 3). The components interact through the string
message of type geoCMD (see Fig. 4). The dispatch
component first provides the message to the driver, and

then the driver passes the message to the geo1 and geo2
components, respectively. The geo1 and geo2
components take the message and invoke the mpirun
command through a Java “exec” system call. A feedback
message on whether the invocation is successful or not is
sent back to the driver.

Using the same grid computing code, we also successfully
ran a similar scenario for the configure where two
computer nodes in another Linux cluster are connected
through a 10 Gigabit Ethernet (GE) network. This
network represented a local prototype for the National
LambdaRail. It consists of two Force 10 E300 10-GE
switches connected to two computer nodes, respectively.
In the near future one Force 10 E300 switch will be
replaced with an Extreme Network Summit 400-48t 1-GE
switch, which has two 10-GE uplinks. The replaced Force
10 E300 will be used to expand the local prototype to
other computer resources at GSFC.

Since the messages used in communicating local and
remote components are not long, the performance
degradation in communication is not noticeable, as
expected. However, we did observe a delay occurring in
the process of establishing the connection between local
and remote components through SSH at the beginning of
an ensemble simulation.

The design philosophy of this prototype is to have
minimum intrusiveness to the supported applications in
the coding as well as in computational efficiency. The
programmer only needs to modify part of the supported
application to interact with the grid computing “geo”
component. For example, a simulation status file with a
specific name needs to be created so that “geo” can detect
it and report back to the driver component. However, such
actions take tiny time and are not expected to have any
impacts on the computational efficiency of a
computation-intensive application. That has been verified
in our tests. As a matter of fact, a production-quality
MoSST ensemble simulation with a modest truncation
level of (40,40,40) takes three days to complete in a
cluster with two dual-processor nodes without the XCAT
framework.

VI. DISCUSSION

By testing our ensemble-dispatching prototype based on
XCAT3 with a production-quality parallel geodynamics
code, we believe that appropriately applying grid
computing technology to high-end computation
applications can be very appealing to scientists and
engineers.

Existing approaches used in running a production-quality
ensemble simulation are more or less done by hand on a

single supercomputer. For example, the NOAA/National
Centers for Environmental Prediction (NCEP) use shell
scripts and computer platform-specific libraries to submit
one or more ensemble weather forecasting jobs into their
IBM supercomputer, collect simulation results, and
resubmit ensemble jobs manually. One single
supercomputer is simply not capable of supporting an
ensemble simulation with the necessary resolution. That
leads the forecaster to reduce resolution as well as the
number of ensemble members. A similar practice is also
used at the Center for Ocean-Land-Atmosphere Studies
(COLA) to predict El Niño-Southern Oscillation (ENSO)
events with its coupled atmosphere-ocean model. In short,
a tool that is user-friendly and capable of using multiple-
supercomputers is needed for the application of
computation-intensive ensemble simulations.

Figure 3 Relationship among driver, dispatcher, and
receiver components.

Figure 4 Flow diagram of invoking a distributed
ensemble simulation. The data of type “geoCMD” is
exchanged among components.

One major goal of our prototype design is to encapsulate
the complexity of network programming and to provide a
user-friendly environment, which is also one of the key
factors for a middleware to succeed. Our prototype
achieves that goal to a great extent. A user only needs to
customize the content of messages and specify the
computer names where an ensemble member is to be
invoked. However, there are several areas worth
improving:

• Add protocols for efficiently transferring a large

amount of data among components since initial
data or simulation outputs may be moved between
local and remote computers. XCAT3 developers
are replacing the default protocol, XSOAP, with
GridFTP.

• Deal with feedback of a running ensemble
simulation. An ensemble member may fail
prematurely, output some simulation results, or
finish. The dispatch component needs to treat the
feedback following the flow diagram shown in
Fig. 5. Basically, the grid computing code, “geo”,
will monitor the performance of the application
code, MoSST. Once an event is detected, “geo”
will compose a message and send it back to the
“dispatcher” component via the “driver”
component. The dispatcher will evaluate the
message and send its response back to “geo”.
Recently, we have developed a system to detect
the output of a simulation and report the finding
back to the driver.

• Intelligently dispatch the next ensemble members.
Currently we treat individual ensemble members
independently. That is, the next dispatched
ensemble member does not depend on the result
of the current one. In some applications, there is a
need to construct a new running environment for
the next ensemble simulation. As shown in Fig. 6,
the “dispatcher” component sends the message,
via the “driver” component, to the receiver
component, “geo1”, at the first remote computer.
After its corresponding application completes,
“geo1” reports the simulation result back to the
driver. The dispatcher evaluates the reported
simulation result and assembles a new running
environment and sends it to “geo2” at the second
remote computer.

Besides providing a standardized way of accessing
distributed computing resources, grid computing also
allows an application to access distributed data resources,
which is especially important for those applications with
data assimilation components. For example, the accuracy
of weather forecasting strongly depends on assimilated
observation data. A variety of observation data are stored
in a few geographically distributed centers. Currently the

data have to be fetched together without selection,
categorized, and then assimilated. This “centralization”
approach is not optimal and complicates the data
assimilation code. With grid computing technology,
providing data can be implemented as a grid service. One
NOAA laboratory is proposing to develop such a system.
Since the components, “driver”, “dispatcher”, “geo”, in
our prototype are grid services through XCAT3, our
prototype also can support those applications that need to
access distributed data provided as a grid service.

Figure 5 Flow diagram of dealing with feedback of a
running distributed ensemble simulation.

Figure 6 Flow diagram of intelligently dispatching
next ensemble members.

NASA GSFC is actively updating its network to connect
to the National LambdaRail (NLR) (see [10]). This
project involves three parts: the local network, the
regional network, and the transcontinental network. The
initial GSFC L-Net will have an inter-building 10-GE
backbone implemented with 10-GE inter-connected

switches. Then the NSF-funded Dynamic Resource
Allocation via GMPLS Optical Networks (DRAGON)
ring is used to connect GSFC to McLean, Virginia, where
the NLR can be reached (see Fig. 7). We will extend this
prototype and run ensemble simulations first among
computers at GSFC campus via the L-Net and then across
the U.S. via the NLR and report the ongoing progress in
the workshop.

Figure 7 NASA GSFC IRAD work on regional fast
network.

VII. CONCLUSION

We have developed a prototype for managing ensemble
simulations with the features of grid computing.
Preliminary testing on the prototype shows that parallel
geodynamics ensemble simulations can be performed
with grid technology in a user-friendly way.

ACKNOWLEDGEMENT

This is project is supported by the NASA Earth-Sun
System Technology Office Computational Technologies
Project. We would like to thank Sriram Krishnan,
Madhusudhan Govindaraju, Dennis Gannon, and Randall
Bramley for technical support in using the XCAT
framework.

REFERENCES

[1] E. Kalnay, Atmospheric Modeling, Data

Assimilation and Predictability, Cambridge, 2003.
[2] H.-P. Bunge, C. R. Hagelberg, and B. J. Travis, “Mantle

Circulation Models with Variational Data Assimilation:
Inferring Past Mantle Flow and Structure from Plate
Motion Histories and Seismic Tomography,” Geophy. J.
Int., 152, 280-301, 2003.

[3] W. Kuang, A. Tangborn, and T. Sabaka, “A Atable Model
Mapping Geomagnetic Data to Geodynamo Solution:
Towards Geomagnetic Data Assimilation,” submitted to
Earth. Planet. Sci. Lett.

[4] W. Kuang, and J. Bloxham, “Numerical Modeling of
Magnetohydrodyanmic Convection in a Rapidly Rotating
Spherical Shell: Weak and Strong Field Dynamo Actions,”
J. Comp. Phys., 153, 51-81, 1999.

[5] W. Kuang, and B. F. Chao, “Geodynamo Modeling and
Core-Mantle Interaction”, in The Core-Mantle Boundary
Region (eds. Dehandt, Creager, Karato, Zatman, AGU),
Geodynamics Series, 31, 193-212, 2003.

[6] S. Krishnan and D. Gannon, “XCAT3: A Framework for
CCA Components as OGSA Services,” Proceedings of
HIPS 2004, 9th International Workshop on High-Level
Parallel Programming Models and Supportive
Environments, April 2004. More information on XCAT is
available at http://www.extreme.indiana.edu/xcat/

[7] F. Berman, G. Fox, and A.J.G. Hey, “Grid Computing,”
Wiley, 2002

[8] Prototyping Tomorrow's Optical Cyberinfrastructure,
http://www.calit2.net/briefingPapers/optiputer.html

[9] GTP: Group Transport Protocol for Lambda-Grids,
http://www.optiputer.net/publications/articles/CHIEN-
GTP_CCGrid2004.pdf

[10] NASA Goddard Space Flight Center Lambda Network,
http://cisto.gsfc.nasa.gov/IRAD_Lambda.html.

[11] Common Component Architecture, http://www.cca-
forum.org/

[12] Jython, http://www.jython.org/
[13] XSOAP, http://www.extreme.indiana.edu/xgws/xsoap/
[14] S. Zhou et al., “Prototyping of the ESMF Using DOE's

CCA,” NASA Earth Science Technology Conference 2003
[15] S. Zhou, “Coupling Climate Models with Earth

System Modeling Framework and Common
Component Architecture,” Concurrency
Computation: Practice and Experience, in press.

